
Modern Integration Methods
in Machine Learning

Draft

Marc Peter Deisenroth

m.deisenroth@ucl.ac.uk

University College London

March 13, 2025

m.deisenroth@ucl.ac.uk

modern integration techniques in machine learning 2

Foreword

This document was created for the COMP0168 module at University
College London. This document is based on the NeurIPS tutorial by
Ong and Deisenroth (2020).1 1 https://mml-book.github.io/

slopes-expectations.html

London, February 2025

Marc Deisenroth

https://mml-book.github.io/slopes-expectations.html
https://mml-book.github.io/slopes-expectations.html

modern integration techniques in machine learning 3

Contents

1 Motivation 5

2 Numerical integration (quadrature) 6

2.1 Newton–Cotes 6

2.2 Gaussian quadrature 8

2.3 Bayesian quadrature 10

2.4 Summary 12

3 Monte Carlo integration 12

4 Normalizing flows 13

4.1 Example 14

4.2 Computing expectations 14

4.3 Computational aspects 15

4.4 Applications 15

4.5 Summary 16

5 Inference in time series models 16

5.1 Deterministic approximate inference 17

5.2 Stochastic approximate inference 21

5.3 Discussion 21

5.4 Example: Time-series inference with Gaussian processes 22

A Gaussian processes 25

B Change of variables 25

C Importance sampling 27

modern integration techniques in machine learning 5

1 Motivation

This tutorial gives a brief overview of integration methods that are
commonly used in machine learning, providing some level of detail.
Throughout, we focus on integration for computing expected values
of the form

Ex∼p[f (x)] :=
∫

f (x)p(x)dx, (1)

where f is a (possibly nonlinear) function and x is a random vari-
able. Expected values of the form (1) play a central role in machine
learning. Here are some examples:

• Statistical quantities. For example, mean, variance, and moments
of random variables x can be expressed as expected values (in
terms of (1)):

Ex[x] =
∫

xp(x)dx =: µ (2)

Vx[x] =
∫
(x − µ)2 p(x)dx = Ex[(x − µ)2] (3)

Mk[x] =
∫

xk p(x)dx = Ex[xk] (4)

• Marginal likelihoods. Marginal likelihoods, which are important
quantities for model selection or model training, can also be ex-
pressed as expected values. Consider a supervised learning prob-
lem with training inputs X := {x1, . . . , xN}, corresponding train-
ing targets Y = {y1, . . . , yN}, and model parameters θ with a cor-
responding prior p(θ). Then, the marginal likelihood is given by

p(Y|X) =
∫

p(Y|X , θ)

likelihood

p(θ)
prior

dθ (5)

= Eθ∼p(θ)[Y|X , θ]. (6)

Writing the marginal likelihood (the predictive distribution of the
training targets given the training inputs) in terms of an expected
value as in (6) makes it clear that the marginal likelihood is noth-
ing but an expected likelihood, where the expectation is taken
with respect to the parameter prior p(θ).

• Predictions in a Bayesian model. Considering the same supervised
setting as above, we have a parameter posterior p(θ|X ,Y). To
make predictions at a test input x∗ we compute the predictive
distribution of the corresponding target as

p(y∗|x∗,X ,Y) =
∫

p(y∗|x∗, θ) p(θ|X ,Y)

posterior

dθ (7)

= Eθ∼p(θ|X ,Y)[y∗|x∗, θ], (8)

which we can again interpret as an expected value, where we take
the expectation with respect to the parameter posterior p(θ|X ,Y).

modern integration techniques in machine learning 6

The marginal likelihood (6) and the Bayesian prediction (8) re-
semble each other. The main difference is that for the marginal
likelihood computation, we compute an expectation (of training
targets) with respect to the parameter prior, whereas the predic-
tive distribution in (8) is obtained by an expectation (of a test tar-
get) with respect to the parameter posterior.

• Bayesian experimental design and Bayesian decision theory. In
Bayesian experimental design [Lindley and Smith, 1972, Chaloner
and Verdinelli, 1995] and Bayesian decision theory [Lindley, 1961],
we are interested in computing expected utilities of the form∫

U(x, θ)p(θ)dθ = Eθ∼p[U(x, θ)] (9)

in order to find optimal designs/decisions x.

The fundamental computational problem to be solved in all exam-
ples above is to determine the integral in (1). In nearly all interesting
cases, this integral cannot be computed analytically, and approxima-
tions are required. The remainder of this chapter looks at a range of
different ways to solve (1).

2 Numerical integration (quadrature)

We consider solving integrals of the form

b∫
a

f (x)w(x)dx. (10)

where w(x) ≥ 0 is a weight function. We start by considering the
case of w(x) = 1, i.e., we would solve the standard, unweighted
definite integral.

x1 x2 x3
xN

f (x1)

f (x2)

f (x3)

f (xN)

Figure 1: In numerical integration, we
compute the expectation as a linear
combination of function values f (xn)
evaluated at nodes xn.

In numerical integration, we normally approximate f , given a set
of nodes xn and corresponding function values f (xn), see Figure 1,
using an interpolating function that is easy to integrate, e.g., a low-
degree polynomial.

Newton–Cotes approaches use low-degree polynomials and equidis-
tant nodes xn to solve the integration problem. For example, if we
approximate f locally using a constant, we obtain the midpoint rule.
The trapezoidal rule approximates f using piecewise linear functions,
and with a quadratic approximation, we obtain the Simpson rule.
Gaussian quadrature approximates f by a set of orthogonal polyno-
mials, and the nodes xn are the roots of these polynomials. Bayesian
quadrature approximates f by a Gaussian process, and the nodes xn

are defined by the user.

2.1 Newton–Cotes

Newton–Cotes approaches use low-degree polynomials to approx-
imate f and equidistant nodes xn to solve the integration problem
in the interval [a, b]; see Figure 2. In the following, we will discuss

modern integration techniques in machine learning 7

the trapezoidal rule and Simpson’s rule as important examples of
Newton–Cotes in more detail.

Trapezoidal rule

a = x0 x1 x2

f (x0)

f (x1)

xN = b

f (x2)

f (xN)

Figure 2: Newton–Cotes quadrature
approximates f by a low-degree poly-
nomial at equidistant nodes xn. We
compute the integrals for each sub-
interval analytically and sum them up
to obtain the desired result.

The trapezoidal rule partitions the interval [a, b] into N segments.
Nodes xn are chosen equidistantly with |xn − xn−1| =: h. With a
locally linear approximation of f , we compute the area between two
nodes as

xn+1∫
xn

f (x)dx ≈ h
1
2
(

f (xn) + f (xn+1)
)
, (11)

which is the area of a trapezoid with corners (xn, xn+1, f (xn+1), f (xn)),
see Figure 3. Then, we obtain the value for the integral in (10) as

b∫
a

f (x)dx ≈ 1
2 h
(

f0 + 2 f1 + · · ·+ 2 fN−1 + fN
)
, (12)

where we used the shorthand notation fn := f (xn).
The trapezoidal rule is straightforward, easy to implement, and

fairly robust. It is a good choice, if the integrand is non-smooth, i.e.,
it exhibits discontinuities in its first derivative. The trapezoidal rule
has an approximation error that shrinks in O(1/N2), where N is the
number of partitions.

xn−1 xn xn+1

f(
x)

Observed function values
True function
Simpson’s rule
Trapezoidal rule

Figure 3: Locally linear (trapezoidal
rule) and quadratic (Simpson’s rule) ap-
proximation of the underlying function
f , evaluated at nodes xn.

Simpson’s rule

Simpson’s rule approximates the integrand locally with quadratic
functions that connect triplets

(
fn, fn+1, fn+2

)
at neighboring nodes

xn, xn+1, xn+2; see Figure 3. The corresponding local integral can
then be approximated as

xn+2∫
xn

f (x)dx ≈ h
3
(fn + 4 fn+1 + fn+2) (13)

so that we obtain the approximation

b∫
a

f (x)dx ≈ h
3
(f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · ·+ 2 fN−2 + 4 fN−1 + fN

)
(14)

of the integral in (10).
Simpson’s rule yields a more accurate approximation than the

trapezoidal rule if the integrand f is smooth. Simpson’s rule has
an approximation error that shrinks in O(1/N4), i.e., it converges
significantly faster than the trapezoidal rule.

modern integration techniques in machine learning 8

Example

Consider solving the integral

1∫
0

exp(−x2 − sin(3x)2)dx (15)

using the trapezoidal and Simpson rules. Figure 4 shows that Simp-
son’s rule approximates the value of the integral in (15) well, and the
error declines significantly faster than with the trapezoidal rule (as a
function of the number of nodes).

0 20 40 60 80 100
Number of nodes

10−7

10−6

10−5

10−4

10−3

10−2

10−1

In
te

gr
at

io
n

er
ro

r

Trapezoidal
Simpson

Figure 4: Comparison of trapezoidal
and Simpson’s rule for approximating
integral (15).

Simpson’s rule is the Newton–Cotes rule most often used in prac-
tice because it retains algorithmic simplicity while offering an ade-
quate degree of approximation.

2.2 Gaussian quadrature

Gaussian quadrature (named after Carl Friedrich Gauß) considers
computing integrals of the form

b∫
a

f (x)w(x)dx, w(x) ≥ 0. (16)

Gaussian quadrature approximates the integral by a weighted sum
of function values f (xn) evaluated at nodes xn (which are no longer
need to be equidistant), i.e.,

b∫
a

f (x)w(x)dx ≈
N

∑
n=1

wn f (xn), (17)

where the nodes xn and weights wn, n = 1, . . . , N, are chosen so
that the approximation error in (17) is minimized.2 Then, Gaussian 2 The weights wn and the weight func-

tion w(x) are two different quantities
and wn ̸= w(xn).

quadrature yields an exact result when the integrated f is a polyno-
mial of degree up to 2N − 1.

The central idea of Gaussian quadrature is to choose the nodes xn

as the roots of a family of orthogonal polynomials. These roots can be
found in a look-up table. The corresponding optimal weights wn are
also known for commonly used orthogonal polynomials. Depending
on the integration bounds a, b and the choice of the weight function
w(x), different families of orthogonal polynomials are used. Table 1

gives an overview of the most commonly used Gaussian quadrature
rules and their corresponding families of orthogonal polynomials.

[a, b] w(x) Orthogonal polynomial
[−1, 1] 1 Legendre polynomials
[−1, 1] (1 − x2)−

1
2 Chebychev polynomials

[0, ∞] exp(−x) Laguerre polynomials
[−∞, ∞] exp(−x2) Hermite polynomials

Table 1: Overview of Gaussian quadra-
ture rules for commonly encountered
problems [Stoer and Bulirsch, 2002].
Depending on the integration bounds
a, b and the weight function w(x), dif-
ferent orthogonal polynomials are used
to achieve optimal results.

modern integration techniques in machine learning 9

Example: Gauß–Hermite quadrature An important quadrature rule is
the Gauß–Hermite quadrature. Here, we are interested in solving∫

f (x) exp(−x2)dx, (18)

which we can also interpret as an expectation with respect to a Gaus-
sian, i.e.,∫

f (x) exp(−x2)

w(x)

dx =
∫

f (x)
√

2π

exp(− x2

2)
N
(
x
∣∣0, 1

)
dx

=
√

2πEx∼N (0,1)

[
f (x)

exp(− x2

2)

]
,

which is of high practical relevance in machine learning and many
engineering disciplines. With a change of variables, we can compute
expected values of function values under a general Gaussian distri-
bution as

E
x∼N

(
µ, σ2

)[f (x)] ≈ 1√
π

N

∑
n=1

wn f (
√

2σxn + µ). (19)

In Gauß–Hermite quadrature, the nodes xn are the roots of the physi-
cists’ version of the Hermite polynomial

HN(x) := (−1)n exp
(x2

2

) dn

dxn exp(−x2), (20)

and the weights are given by

wn :=
2N−1N!

√
π

N2H2
N−1(xn)

. (21)

Discussion Comparing Gaussian quadrature with Newton–Cotes ap-
proaches, we see that Gaussian quadrature solves integration prob-
lems with higher accuracy at the same number of function evalu-
ations f (xn), n = 1, . . . , N. In practice, a good choice of N is un-
known in advance, so that one tries out different values of N. While
Newton–Cotes approaches can re-use computations from smaller val-
ues of N, this does not hold for Gaussian quadrature, so that some
of the computational advantages vanish. There are ways to mitigate
this [Kronrod, 1965]. For a more detailed discussion, we refer to Stoer
and Bulirsch [2002]. Overall, Gaussian quadrature is the method of
choice for numerical integration in low dimensions. Therefore, Gaus-
sian quadrature is often a key component in software packages to
accurately solve low-dimensional integrals. Important application
areas of Gaussian quadrature include computing probabilities for
rectangular bivariate/trivariate Gaussian and t-distributions [Genz,
2004], marginalization of a few hyper-parameters in latent-variable
models [Rue et al., 2009] or making predictions with a Gaussian pro-
cess classifier [Matthews et al., 2017].

However, Gaussian quadrature also has limitations. It does not
scale to more than three-dimensional inputs and it cannot deal with
noisy function evaluations f (xn). To address these issues, there are
alternative integration methods, such as Bayesian quadrature and
Monte Carlo estimation.

modern integration techniques in machine learning 10

2.3 Bayesian quadrature

In all quadrature schemes we discussed so far, we assumed that eval-
uating the function f at nodes xn is cheap. That is typically the case
when functions are analytic or simple lookup tables. However, we
may encounter situations where evaluating a function is costly. For
example, if we were to calculate the risk or expected utility of a new
drug, evaluating f may require testing of a drug, which may take
weeks or months. In these cases, we are interested in computing ex-
pectations (such as risks and expected utilities) with a small number
of function evaluations.

Bayesian quadrature [O’Hagan, 1991] addresses this issue by for-
mulating quadrature as a statistical inference problem:3 We are in- 3 The research area of probabilistic nu-

merics very much exploits the close re-
lationship between statistical inference
and quadrature [Hennig et al., 2015,
Briol et al., 2015].

terested in finding something out about the integral value

Z :=
∫

f (x∗)p(x∗)dx∗ = Ex∗∼p[f (x∗)] (22)

using previously observed data {(x1, y1), . . . , (xN , yN)}, where yn =

f (xn) + ε with ε ∼ N
(
0, σ2

ε

)
. Bayesian quadrature places a Gaus-

sian process (GP) prior on f and uses Bayes’ theorem to determine
a posterior distribution on f , which induces a posterior distribution
on the value Z of the integral [Diaconis, 1988, O’Hagan, 1991, Ras-
mussen and Ghahramani, 2003].4 4 A brief introduction to Gaussian pro-

cesses is given in Appendix A.

Mean and variance of the integral value The GP on f in (22) induces a
distribution p(Z) = N

(
Z
∣∣µZ, σ2

Z
)

on Z itself.5 The expected value of 5 The integral in (22) is a linear pro-
jection onto the direction defined by
p(x). Therefore, the posterior is
also Gaussian [Rasmussen and Ghahra-
mani, 2003].

Z in (22) is

µZ = E f [Z] = E f ,x∗ [f (x∗)] = Ex∗∼p
[
E f∼GP[f (x∗)|x∗]

]
(23)

= Ex∗∼p[µpost(x∗)], (24)

where we exploited the law of iterated expectations. With a GP prior
f ∼ GP(0, k)

µpost(·) = k(·, X)(K + σ2
ε I)−1y (25)

is the GP’s posterior mean function, where X and y are the training
inputs and targets, respectively. Furthermore, k is the GP’s kernel
and K the corresponding kernel matrix. Then, we obtain the ex-
pected value of the integral Z as

µZ =
∫

k(x∗, X)p(x∗)dx∗(K + σ2
ε I)−1y = z⊤(K + σ2

ε I)−1y, (26)

where

zn =
∫

k(x∗, xn)p(x∗)dx∗ = Ex∗∼p[k(x∗, xn)] (27)

is a kernel expectation, which computes the expected covariance be-
tween f (x∗) and f (xn).

The variance of the integral Z is given by

σ2
Z = V f [Z] =

∫∫
kpost(x∗, x′∗)p(x∗)p(x′∗)dx∗dx′∗, (28)

modern integration techniques in machine learning 11

where kpost(·, ·) is the posterior covariance function

kpost(·, ·′) = k(·, ·′)− k(·, X)(K + σ2
ε I)−1k(X, ·′). (29)

We now obtain the variance of Z (by using (29) in (28)) as

σ2
Z =

∫∫
k(x∗, x′∗)p(x∗)p(x′∗)dx∗dx′∗

−
∫

k(x∗, X)p(x∗)dx∗

=z⊤

(K + σ2
ε I)−1

∫
k(X, x′∗)p(x′∗)dx′∗

=z′

(30)

= Ex∗ ,x′∗ [k(x∗, x′∗)]− z⊤(K + σ2
ε I)−1z′, (31)

where the kernel expectations z, z′ are defined in (27).

Kernel expectations Computing the kernel expectations zn in (27) and
(31) still requires solving an integration problem, but arguably this
integration problem is easier to solve than the original one. Kernel
expectations can be computed analytically in a few cases, e.g., when
p is a Gaussian and the kernel k(·, ·) is a polynomial or an RBF ker-
nel [Rasmussen and Ghahramani, 2003, Girard et al., 2003, Deisen-
roth et al., 2015]. If p is non-Gaussian (but we still use an RBF or
polynomial kernel), we could use an importance-sampling scheme

Z =
∫

f (x)p(x)dx =
∫ f (x)p(x)

q(x)
q(x)dx, (32)

where the GP now models f (x)p(x)
q(x) , where q is Gaussian and p ar-

bitrary. If k is a kernel for which we cannot compute the kernel
expectations (27) and (31) analytically, we may be able to resort to
numerical integration (e.g., using the techniques discussed earlier)
or Monte Carlo integration. Kernel expectations appear not only in

Input distribution p
Kernel k Gaussian non-Gaussian

Polynomial/RBF analytical analytical via
importance-sampling trick

otherwise Monte Carlo or Monte Carlo or
numerical integration numerical integration

Table 2: Overview of how kernel expec-
tations can be computed.

Bayesian quadrature but also in kernel MMD [Gretton et al., 2012],
time-series analysis with Gaussian processes [Girard et al., 2003, Ko
and Fox, 2009, Deisenroth et al., 2012, Deisenroth and Mohamed,
2012, Eleftheriadis et al., 2017], deep Gaussian processes [Damianou
and Lawrence, 2013, Salimbeni and Deisenroth, 2017, Salimbeni et al.,
2019] or model-based reinforcement learning with GPs [Deisenroth
and Rasmussen, 2011, Deisenroth et al., 2015, Cutler and How, 2015].

While the use of Gaussian process priors may seem unwieldy, they
also allow numerical integration to applied to situations where obser-
vations of f are noisy, evaluating f is expensive, we wish to exploit
correlations between function values, or we know something about
the structure of f , which can be exploited when choosing the GP’s
mean and covariance functions.

modern integration techniques in machine learning 12

2.4 Summary

Numerical integration methods are good for solving low-dimensional
integration problems quickly and accurately. The central approxima-
tion was

b∫
a

f (x)dx ≈
N

∑
n=1

wn f (xn). (33)

Newton–Cotes methods use equidistant nodes xn and low-degree
polynomial approximations of f . In Gaussian quadrature, the nodes
xn are the roots of interpolating orthogonal polynomials. Bayesian
quadrature formulates integration as a statistical inference problem
and uses a global approximation of f by means of a GP. These meth-
ods can be applied to low and moderate-dimensional integration
problems. For higher-dimensional settings (maybe up to 100–1000

dimensions), we may want to resort to Monte Carlo integration (Sec-
tion 3) to get an exact solution in the limit. Table 3 gives an overview
of when various integration techniques can be applied.

Dimensionality Method
≤ 3 Gaussian quadrature
≤ 10 Bayesian quadrature
≤ 1000 Monte Carlo integration

Table 3: Overview of integration tech-
niques based on the dimensionality of
the input dimension.

However, Monte Carlo estimation can be fairly slow, especially
when we have to use MCMC methods to draw samples from high-
dimensional complex distributions. In this case, we may want to
consider approximation techniques that will not give us the exact
solution to our integral problem, but will give us an approximate
solution relatively fast. Algorithms that fall into this category make
approximating assumptions on p and include variational inference
or the Laplace approximation.

3 Monte Carlo integration

Monte Carlo methods are computational techniques that make use
of random numbers. We consider two typical problems:

1. Generate samples x(s) from a given probability distribution p(x),
e.g., for simulation (generative models) or particle representations
of distributions.

2. Computing expectations of functions under that distribution, i.e.,
we need to solve integrals of the form

Ex∼p[f (x)] =
∫

f (x)p(x)dx. (34)

In the context of this tutorial, we will exclusively focus on the second
problem, i.e., we will avoid the (more complicated) problem of gen-
erating samples from a probability distribution. However, we refer
to Iain Murray’s tutorial [Murray, 2015] for an excellent overview.

modern integration techniques in machine learning 13

The key idea behind Monte Carlo integration is to use random
numbers to approximate an integral. Specifcally, Monte Carlo meth-
ods compute expectations by statistical sampling, so that

Ex∼p[f (x)] =
∫

f (x)p(x)dx ≈ 1
S

S

∑
s=1

f (x(s)), x(s) ∼ p(x). (35)

The Monte Carlo estimator (35) is unbiased and asymptotically con-
sistent, i.e.,

lim
S→∞

1
S

S

∑
s=1

f (x(s)) = Ex∼p[f (x)] + ϵ, (36)

where the error ϵ is Gaussian distributed and its variance shrinks in
O(1/S), independent of the dimensionality.

4 Normalizing flows

Normalizing flows [Rezende and Mohamed, 2015] provide a great
way to build complex distributions from simple distributions via a
flow of successive (invertible) transformations. A great overview of
flow-based models is given by Weng [2018] and Papamakarios et al.
[2019].

Flow-based models are special versions of latent-variable models.
Here, the distribution p(x) of the data is obtained by marginalizing
out a latent variable z according to

p(x) =
∫

p(x|z)p(z)dz. (37)

This latent-variable model consists of a prior distribution p(z) on the
latent variable (code) z and a “prescription” p(x|z) of how to gener-
ate data x for a given realization z of the latent variable. Instead of
modeling a complicated data distribution p(x) directly, which is of-
ten hard, we can parametrize the prior p(z) and the generator p(x|z)
as an indirect way to get p(x).

z0 z1 z2 zK x
f1 f2 fK = Figure 5: Normalizing flow. The nor-

malzing flow defines a chain of invert-
ible transformations fk of a simple base
distribution p0(z0) into a complex data
distribution p(x).A normalizing flow is a specific way to define p(z) and, more

importantly, p(x|z). Focusing on p(x|z), a normalizing flow defines
a chain of K transformations

x = zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0) (38)

with fk : RD → RD invertible and z0 ∼ p0, where p0 is called a base
distribution. The path (z0, . . . , zK) of random variable zk = fk(zk−1),
k = 1, . . . , K, is called a flow, and the path (p0, . . . , pK) of the corre-
sponding distributions is called a normalizing flow. Figure 5 illustrates
a normalizing flow.

Under mild assumptions, a normalizing-flow model can express
any distribution, even if the base distribution p0 is simple [Papa-
makarios et al., 2019].

modern integration techniques in machine learning 14

By repeated application of the change-of-variables-trick6, we ob- 6 See Appendix B for a brief introduc-
tion.tain the marginal distribution at the “end” of the flow as

p(x) = p(zK) = p(z0)
K

∏
k=1

∣∣∣∣∣det
d f−1

k (zk−1)

dzk−1

∣∣∣∣∣ = p(z0)

∏K
k=1

∣∣∣det d fk(zk−1)
dzk−1

∣∣∣
(39)

and the entropy can be efficiently computed as

log p(x) = log p(zK) = log p(z0)−
K

∑
k=1

log
∣∣∣∣det

(
d fk(zk−1)

dzk−1

)∣∣∣∣ . (40)

Note that we do not need to invert fk explicitly, since we are only
interested in the determinant

det

(
d f−1

k (zk)

dzk

)
=

1

det
(

d fk(zk−1)
dzk−1

) (41)

for which we only need the forward transformation fk.

4.1 Example

We consider an example where p0 = N
(
0, I

)
. We successively apply

planar flows

zk = fk(zk−1) = zk−1 + uσ(w⊤zk−1 + b). (42)

Figure 6: Illustration of a normalizing
flow with 1, 2, 3, 7, and 12 planar flows;
generated using a PyMC3 tutorial [Sal-
vatier et al., 2016].

Figure 6 shows the transformed distributions after application of
1, 2, 3, 7, and 12 applications of the planar flow (42). The more often
the planar flow is applied the more complex distributions we can
model.

4.2 Computing expectations

Expectations with respect to pK can be computed without explicitly
knowing pK (law of the unconscious statistician; LOTUS). Assume
we want to compute an expected loss EpK [l(x)], then we can get this
as

EpX [l(x)] = EpK [l(zK)] = Ep0 [l(fK ◦ fK−1 ◦ · · · ◦ f1(z0))]. (43)

We can obtain this expectation as a Monte Carlo estimate. First,
we generate a sample z(s)0 ∼ p0(z0) from the base distribution and
then push that sample through f1, . . . , fK (ancestral sampling), which
yields a valid sample x(s) ∼ pX(x) from our target distribution. Us-
ing these samples, we can use Monte Carlo integration (see Section 3)
to compute the expected value in (43).

modern integration techniques in machine learning 15

4.3 Computational aspects

The computational challenge in normalizing flows lies in the com-
putation of the (log-)determinant terms of the Jacobians, e.g., (40).
These determinants can be computed efficiently, i.e., in linear time,
if the Jacobian is diagonal or a triangular matrix, in which case the
determinant is the product of the diagonal elements. To construct Ja-
cobians that are triangular, we can define functions fk in a particular
way.

Looking at the Jacobian d fk/dzk−1 = dzk/dzk−1, zk−1 ∈ RD, we
get 

∂z(1)k

∂z(1)k−1

∂z(1)k

∂z(2)k−1

. . . ∂z(1)k

∂z(D)
k−1

∂z(2)k

∂z(1)k−1

∂z(2)k

∂z(2)k−1

. . . ∂z(2)k

∂z(D)
k−1

...
. . .

...
∂z(D)

k

∂z(1)k−1

. ∂z(D)
k

∂z(D)
k−1


∈ RD×D. (44)

To make this Jacobian (collection of partial derivatives) a triangu-

lar matrix, we require the partial derivatives ∂z(d)k

∂z(>d)
k−1

in the upper-

triangular matrix (in red) to vanish.
One way to achieve this is to use an autoregressive model (applied

to the dimensions of zk) to sequentially build up zk. In this autore-
gressive flow, each dimension d of zk can be written as

z(d)k = fk(z
(1)
k−1, . . . , z(d)k−1) = fk(z

(≤d)
k−1). (45)

A special example of an autoregressive flow uses the transforma-
tion

z(d)k = τ(z(d)k−1; cd(z
(<d)
k−1)), (46)

where τ is a transformer and c a conditioner. The conditioner parametrizes
the transformer, but does itself not need to be invertible [Papamakar-
ios et al., 2019].

Examples of autoregressive-flow models include NICE [Dinh et al.,
2014], Real NVP [Dinh et al., 2017], Masked Autoregressive Flow [Pa-
pamakarios et al., 2017], Inverse Autoregressive Flow [Kingma et al.,
2016], Neural Autoregressive Flows, spline flows, Block Neural Au-
toregressive Flows, Glow [Kingma and Dhariwal, 2018].

4.4 Applications

We can think of the re-parametrization trick used in variational auto-
encoders (VAEs) [Rezende et al., 2014, Kingma and Welling, 2014] as
a special case of a normalizing flow, so that the key ideas of nor-
malizing flows are used to perform (variational) inference in deep
generative model. In a VAE, p(z) is a complex posterior over latent
variables z, and f transforms a simple input distribution (for exam-
ple, a standard normal distribution) over x into a complex approx-
imate posterior q(z). Other application areas of normalizing flows

modern integration techniques in machine learning 16

include graph neural networks [Liu et al., 2019], parallel WaveNet
[Oord et al., 2018], but also neural ODEs [E, 2017, Chen et al., 2018].
Normalizing flows have also been generalized to flows on manifolds
[Gemici et al., 2016, Rezende et al., 2020, Mathieu and Nickel, 2020].

4.5 Summary

Normalizing flows provide a constructive way to generate rich dis-
tributions. The key idea is to transform a simple distribution using a
flow of successive (invertible) transformations. Key ingredient is the
change-of-variables trick. From a practical (computational) perspec-
tive, Jacobians can be computed efficiently, if the transformations are
defined appropriately. Normalizing flows can be used as a generator
and inference mechanism.

5 Inference in time series models

As an application of integration, we consider the problem of infer-
ence in time series. We focus on discrete-time settings.

Assume a distribution p(x0) of the initial state x0 and a Markovian
state evolution

xt+1 = f (xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
(47)

where f is a transition function and p(x0) the distribution of the
initial sate.7 7 We make the simplifying assumption

of additive Gaussian noise in (47) as this
greatly simplifies some of the problems
we have to solve.

We are often interested in computing an expected utility

Eτ [U(τ)], (48)

where the expectation is taken with respect to state trajectories τ :=
(x0, . . . , xT). A trajectory is a sequence of states from the initial state
at time 0 to a final state at time T. Examples include:

• Reinforcement learning and optimal control, where U is a long-
term cost/reward function [Sutton and Barto, 1998, Bertsekas, 2005]

• Logistics, when we forecast demand and associated costs

• Weather/climate forecasts, which can be used for assessing the
risk level of flooding.

The main challenge in all these scenarios is to make long-term pre-
dictions, which requires uncertainty propagation. Uncertainty could
enter through uncertain initial states, noise in the system or, if we
learn f , uncertainty about some model parameters.

The problem we consider is to determine a (predictive) distribu-
tion of the state xt for t = 1, . . . , T. There are multiple ways to look
at this problem:

1. Iterative prediction (similar to Kalman filtering). In this distribu-
tional perspective, we compute marginal distributions p(x1), . . . , p(xT)

iteratively. In the context of this tutorial, we consider Gaussian

modern integration techniques in machine learning 17

marginals that are parametrized by a mean µt and a covariance
matrix Σt.

2. Trajectory sampling (done in RL quite often). In this pathwise per-
spective, we generate multiple trajectories τi := (x(i)1 , . . . , x(i)T) from
which we can extract the marginals p(x1), . . . , p(xT).

In the following, we will discuss two approaches for making long-
term predictions: Deterministic and stochastic approximate infer-
ence. In deterministic approximate inference, we iteratively compute
the state marginal distributions p(x1), . . . , p(xT), compute expected
utilities Ext [u(xt)] at every time step, and sum them up to obtain

Eτ [U(τ)] =
T

∑
t=0
Ext [u(xt)] =

T

∑
t=0

∫
u(xt)p(xt)dxt. (49)

In stochastic approximate inference, we generate sample trajectories
τ(s) and use Monte Carlo integration to determine the expected util-
ity (48) via

Eτ [U(τ)] ≈ 1
S

S

∑
s=1

U(τ(s)). (50)

5.1 Deterministic approximate inference

Predicting the (marginal) distributions p(x1), . . . , p(xT) of the state
trajectory iteratively, requires us to repeatedly solve the following
integral:

p(xt+1) =
∫

p(xt+1|xt)p(xt)dxt (51)

=
∫

N
(

xt+1
∣∣ f (xt), Q

)
p(xt)dxt. (52)

Commonly, the marginals p(xt) are approximated by Gaussians, i.e.,
p(xt) ≈ N

(
µt, Σt

)
. Classical approaches for determining an approx-

imate Gaussian distribution include linearization8 (e.g., extended 8 approximate f

Kalman filter), unscented transformation9 (e.g., unscented Kalman 9 approximate p(xt).

filter), and moment matching10 (e.g., assumed density filter). 10 Determine correct mean and variance
of predictive distribution.

Linearization

Linearization [Smith et al., 1962, Ohab and Stubberud, 1965] ex-
ploits that a linear/affine transformation of a Gaussian distribution
remains Gaussian. With a Gaussian distribution p(xt) = N

(
µt, Σt

)
,

an affine transformation of xt via

xt+1 = Axt + b (53)

results in a Gaussian distribution p(xt+1) = N
(

Aµt + b, AΣt A⊤).
In the context of the time-series model (47), function f is a non-

linear transformation of xt. To locally approximate f using a linear

modern integration techniques in machine learning 18

x

p(
x)

Input distribution

f(
x)

f
flin

p(f (x))

Ground truth
Lin. approximation

Figure 7: Illustration of linearization.
Prediction by locally linearizing a non-
linear function and then analytically
pushing the Gaussian through the lin-
earized function.

function flin (thereby turning the nonlinear transformation into a lin-
ear one), we can use a first-order Taylor-series expansion around µt
to obtain

flin(x) = f (µt) + J(µt)(x − µt), (54)

where

J(µt) :=
d f (x)

dx

∣∣∣∣
x=µt

(55)

is the Jacobian of f evaluated at x = µt. Approximating f by flin

allows us to compute an approximate Gaussian distribution of xt+1

as

p(xt+1) ≈ N
(

xt+1
∣∣µt+1, Σt+1

)
(56)

µt+1 = Ex[flin(x)] = f (µt) (57)

Σt+1 = Vx[flin(x)] = J(µt)Σt J(µt)
⊤ + Q, (58)

where the additional Q in the expression of the predictive covariance
is due to the additive noise term in (47).

Computing a Gaussian approximate predictive distribution via
linearization is conceptually straightforward, but it requires a differ-
entiable transition function f . Moreover, in practice, the linearization
approach tends to underestimate the true covariance, which results
in overconfident predictions. This can lead to problems in down-
stream applications that rely on reasonable uncertainty estimates.

modern integration techniques in machine learning 19

Computing the predictive distribution scales in O(D3), where D is
the dimensionality of the state. Linearization, as a way to approxi-
mate (52) is widely used in engineering. For example, the extended
Kalman filter (EKF) exploits linearization to compute a posterior dis-
tribution on unobserved states. The EKF is at the core of GPS and
was used in multiple Apollo missions.

Unscented transformation

An alternative approach to linearization to approximate the integral
in (52) is the unscented transformation [Julier et al., 1995]. The key
idea behind the unscented transformation [Julier et al., 1995] is that
instead of approximating function f (which linearization does), we
can approximate p(xt). More specifically, the unscented transforma-
tion represents p(xt) using a small set of 2D + 1 sigma points, which
we can think of as deterministically chosen particles. We then eval-
uate the original function f at those sigma points and compute a
(weighted) Monte Carlo estimate of the predictive mean and covari-
ance of the mapped sigma points.11 Figure 8 illustrates the idea of 11 The expression “Monte Carlo esti-

mate” is somewhat misleading in this
context since neither the sigma points
nor the weights are chosen at random.

the unscented transformation.

x

p(
x)

Input distribution
Sigma points

f(
x)

f
Mapped sigma points

p(f (x))

Ground truth
UT approximation

Figure 8: Illustration of unscented
transformation. Prediction by approxi-
mating the input distribution by means
of sigma points.

Sigma points are deterministically chosen as

Xt = {µt + α(
√

Σt)i, i = 1, . . . , D}, (59)

modern integration techniques in machine learning 20

where
√

Σt is a square-root of the covariance matrix (the Cholesky
factor would be one option), and α spreads the sigma points sym-
metrically around the mean. The sigma points satisfy some nice
properties, such that their mean and variance match µt and Σt of the
input distribution.

The predictive mean and covariance are then given by

µt+1 ≈
2D+1

∑
d=1

wµ
d f (X (d)

t) (60)

Σt+1 ≈
2D+1

∑
d=1

wΣ
d (f (X (d)

t)− µt+1)(f (X (d)
t)− µt+1)

⊤, (61)

respectively, where D is the dimensionality of xt, X (d)
t are the sigma

points and wµ
d and wΣ

d are weights for the mean and covariance, re-
spectively. For further details on the unscented transformation, we
refer to [Julier and Uhlmann, 2004, Thrun et al., 2005].

The unscented transformation does not require an explicit calcu-
lation of the Jacobian. Furthermore, it achieves a slightly higher ac-
curacy than linearization for the covariance estimate. The UT ap-
proximations are accurate to the third order for Gaussian inputs for
all nonlinearities. For non-Gaussian inputs, approximations are ac-
curate to at least the second order [Julier and Uhlmann, 1997]. Note
that the unscented transformation is not a Monte Carlo method since
the unscented transformation does not use any random numbers;
sigma points are deterministically determined.

Moment matching

In moment matching, we choose a distribution that is easy for us to
work with and project the true predictive distribution onto this distri-
bution family. The moments of the approximate distribution (which
lies in the distribution family of our choice) are found by minimizing
the KL divergence between the true posterior and the distribution of
our choice. In the end, this comes down to moment matching.

To compute the mean and covariance of xt+1, both linearization
and the unscented transformation implicitly approximate the joint
distribution p(xt, xt+1) using a Gaussian distribution [Deisenroth et al.,
2012]. However, the moments of this approximate Gaussian distri-
bution are not exact. It is sometimes possible to compute the mo-
ments of the joint distribution analytically, which then yields a better
approximation in a KL sense. This means that the approximating
(Gaussian) distribution is the best (unimodal) approximation to the
true (unknown) distribution.

Assuming p(xt) is Gaussian, moment matching computes the ex-
act mean and covariance of the predictive distribution

p(xt+1) =
∫

p(xt+1|xt)p(xt)dxt (62)

and approximates p(xt+1) by means of a Gaussian N
(
µt+1, Σt+1

)
,

where the mean and the covariance correspond to the mean and

modern integration techniques in machine learning 21

the covariance of p(xt+1). Note that this is not true for lineariza-
tion or the unscented transformation. This Gaussian approximation
can then be taken as the new input distribution, so that this approx-
imation scheme, when iterated, yields approximate Gaussian state
distributions p(x1), . . . , p(xT).

Given that p(xt) is Gaussian, not all hope is lost to compute the
mean and covariance of p(xt+1) in (62). For example, if the transi-
tion function f is a polynomial, a radial-basis function network (with
Gaussian basis functions), or a Fourier series, these quantities can
be computed analytically. Gradshteyn and Ryzhik [2007] provide a
great overview of analytical solutions for these (and more) settings.
It is also possible to use Monte Carlo integration to compute the mo-
ments as it is easy to sample from a Gaussian p(xt).

Moment matching is used in the context of assumed density filter-
ing [Brigo et al., 1999], expectation propagation (a message passing
algorithm) [Minka, 2001, Csató et al., 2002], reinforcement learning
and robotics [Deisenroth et al., 2015] and for inference in Bayesian
neural networks [Hernández-Lobato and Adams, 2015, Ghosh et al.,
2016].

5.2 Stochastic approximate inference

The expectation (48) requires averaging over state trajectories τ =

(x0, . . . , xT). In stochastic approximate inference, we would sample
trajectories τ(s) and compute a Monte Carlo estimate

Eτ [U(τ)] ≈ 1
S

S

∑
s=1

U(τ(s)). (63)

0 10 20 30
Time steps

−20

−10

0

10

20

St
at

e

Figure 9: Time evolutions of a state.
Trajectories are generated according
to (64). The distribution over trajec-
tories is represented by the collection/
ensemble of samples.

To sample a trajectory, we start with a sample x(s)0 ∼ p(x0). Sub-
sequently, we will need to sample

x(s)t ∼ p(xt|x(s)0 , . . . , x(s)t−1) = p(xt|x(s)0), (64)

where the latter equality holds for Markovian systems. Figure 9 il-
lustrates a distribution over trajectories represented by a collection/
ensemble oft these sampled trajectories. We do not require paramet-
ric assumptions on the distribution of trajectories; however, we will
have to store all samples, which may result in memory issues. Se-
quential Monte Carlo and particle filtering [Doucet et al., 2000, Thrun
et al., 2005] rely on this kind of inference.

5.3 Discussion

Table 4 gives a brief overview of properties of deterministic and
stochastic inference techniques. Deterministic approximations typ-
ically have a parametric representation of the marginals, whereas in
the stochastic case, we extract the marginals from particles/samples.
Deterministic approaches introduce bias, whereas stochastic ones do
not. Typically, deterministic approaches are fast (they only require a
single “sweep” of computations) while stochastic approaches could

modern integration techniques in machine learning 22

Deterministic Stochastic
Marginal representation Parametric Particles
Bias Yes No
Time correlation No Yes
Speed Fast (Slow)
Parallelization Easy
Memory consumption Low (High)
Gradients Deterministic Stochastic

Table 4: Properties of deterministic and
stochastic approximations.

be considered slower. That said, typically, each single computation in
the stochastic approach is fairly cheap and these computations can
be easily parallelized. Therefore, the wall-clock time of stochastic
approaches may not be too bad. Memory consumption in determin-
istic approaches is low compared to stochastic approaches, because
one only has to store the moments of the marginals, whereas in the
stochastic case one needs to keep all particles around. Looking at
gradients, deterministic approximate inference gives rise to deter-
ministic gradients, while stochastic approximate inference will in-
variably yield only stochastic gradients. How to efficiently deal with
stochastic gradients is described in detail by Mohamed et al. [2020].

5.4 Example: Time-series inference with Gaussian processes

In the following, we consider the case of time-series inference where
f ∼ GP is distributed according to a Gaussian process, i.e.,

xt+1 = f (xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
, f ∼ GP(m, k).

(65)

In the following, we will outline approaches to deterministic and
stochastic approximate inference in these systems. Figure 10 illus-
trates the difference between both approaches: In sampling-based
(stochastic) approaches, the GP distribution is represented by a set
of sampled trajectories (green), while deterministic approaches use
parametric (Gaussian) distributions to represent marginals of the GP. 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x

−4

−2

0

2

4

6

8

f(
x)

Posterior mean
Training data
Samples
Posterior uncertainty

Figure 10: Samples from a GP posterior
(green). The marginal Gaussian poste-
riors are indicated by the mean (black)
and the shaded region representing the
corresponding uncertainty.

Deterministic approximate inference Here, we aim to extract marginal
distributions

p(xt+1) =
∫

p(xt+1|xt)p(xt)dxt (66)

=
∫∫

p(f (xt)| f , xt)p(f)d f p(xt)dxt (67)

by means of deterministic approximations, i.e., without the use of
randomness. Similarly to non-GP systems, deterministic inference
can be performed by means of linearization [Ko and Fox, 2009],
unscented transformation [Ko and Fox, 2009] or moment matching
[Quiñonero-Candela et al., 2003, Deisenroth et al., 2009]. In all cases,
the uncertainty of the GP must be taken into account when predict-
ing the mean and covariance matrix of xt+1.

For example, to do moment matching with GPs, we aim to com-
pute the mean and variance of xt+1. If we assume xt ∼ p and

modern integration techniques in machine learning 23

f ∼ GP(m, k), then

µt+1 := E f∼GP,xt∼p[f (xt)] = Ext∼p

[
E f∼GP[f (xt)]

]
= Ext∼p[m(xt)],

(68)

where we exploited the law of iterated expectations and where we
use m for the (posterior) mean function of the GP. Computing this
expectation will require computing kernel expectations as discussed
in (27) in Section 2.3.

−1 −0.5 0 0.5 1
0

1

 x
t

p
(x

t)

−1 −0.5 0 0.5 1

x t+
1

0 0.5 1 1.5

x t+
1

p(x
t+1

)

Figure 11: Moment matching with
Gaussian processes. An input distribu-
tion p(xt) is pushed through the Gaus-
sian process. The exact predictive dis-
tribution (red) cannot be computed an-
alytically, but the mean and the vari-
ance can be determined via kernel ex-
pectations. Then, the true predictive
distribution can be approximated by a
Gaussian that has the correct mean and
variance.

The predictive variance is obtained as

Σt+1 := V f∼GP,xt∼p[f (x)] (69)

= Vxt∼p

[
E f∼GP[f (xt)]

]
+Ext∼p

[
V f∼GP[f (xt)|xt]

]
, (70)

where we used the law of total variance. Again, we will need to
compute kernel expectations to compute the predictive variance. Fig-
ure 11 illustrates moment matching with Gaussian processes. More
details on moment matching with GPs in dynamical systems can be
found in [Deisenroth et al., 2012, 2015].

Stochastic approximate inference Instead of iteratively computing mar-
ginal distributions of future states, we can also follow the pathwise
perspective and sample trajectories from (posterior) Gaussian pro-
cesses. To ensure we get consistent trajectories from a GP posterior,
we need to account for samples x(i)1 , . . . , x(i)t when sampling x(i)t+1.
This can be done by augmenting the training dataset with these sam-
ples12. The issue with this approach to trajectory sampling is that it 12 We will need to delete these samples

from the training set once the full tra-
jectory has been generated.

scales cubically in the length of the trajectory, when implemented
naively, as it would require sampling from a T-dimensional multi-
variate Gaussian distribution.

Wilson et al. [2020a] propose a more efficient way to sample tra-
jectories from GP posteriors. The key insight is to exploit Matheron’s
rule, which allows us to write a posterior sample as a sum of a sam-
ple from the prior prior and a data-dependent update term:

f (s)(·)
sample

from prior

+ k(·, X)(K + σ2
ε I)−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X, y
sample

from posterior

. (71)

modern integration techniques in machine learning 24

The data-dependent update term depends on error/residual between
the prior sample and the training data y. The update can be thought
of as a mapping from prior to posterior. Figure 12 illustrates the
decomposition of the GP posterior into a sum of the prior and a
data-dependent update term.

0.0 0.5 1.0

−2.5

0.0

2.5

Prior function

(a) Sample from the prior
(orange) ignores the data
(dots).

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

(b) Data-dependent update
(purple) of the prior sam-
ple.

0.0 0.5 1.0

−2.5

0.0

2.5

Conditioned path

(c) Sample from the pos-
terior (blue) is obtained as
the sum of the prior sam-
ple and the data-dependent
update.

Figure 12: Efficiently sampling from
posterior GPs. Matheron’s rule allows
us to express a sample from the poste-
rior GP as the sum of a sample from
the GP prior and a (deterministic) data-
dependent update term. Figure from
[Wilson et al., 2020a].

To increase computational efficiency, Wilson et al. [2020a] use dif-
ferent representations of the GP prior and the data-dependent up-
date term. By separately representing the prior using Fourier basis
functions (assuming a stationary kernel) and the update term us-
ing canonical basis functions k(·, xj), an efficient approximator of the
posterior GP is obtained.13 The data-dependent update term de- 13 The Fourier basis is well-suited for

representing the prior [Rahimi and
Recht, 2008], and the canonical ba-
sis is well-suited for representing the
data [Burt et al., 2019].

pends on error/residual between the prior sample and the training
data y. The update can be thought of as a mapping from prior to
posterior. Different representations for prior and update terms can
be used, e.g., random Fourier features (RFF) for the prior and finite
basis-function representation for update. Then,

• Sampling from RFF prior scales linearly in the number T of test
inputs.

• The update term can be computed linearly in the number T of test
inputs.

Overall, functions can be sampled efficiently, i.e., linearly in the num-
ber of test/query inputs, which is a significant speedup from the
original cubic scaling with a naive implementation.

Applications of this efficient sampling strategy include deep con-
volutional GP auto-encoders [Wilson et al., 2020b], Bayesian opti-
mization with Thompson sampling [Wilson et al., 2020a], sampling
from GPs on manifolds [Borovitskiy et al., 2020], and model-based re-
inforcement learning [Wilson, 2023]. It is also integrated into BOTorch,
a software toolbox for Bayesian optimization [Balandat et al., 2020].

modern integration techniques in machine learning 25

A Gaussian processes

A GP is a rich Bayesian model that implements a distribution over
functions.14 A GP assumes that any finite collection of function val- 14 Gaussian processes originated in the

geostatistics and mining community
under the term ‘Kriging’, coined after
Danie Krige, whose MSc thesis [Krige,
1951] at the University of the Witwa-
tersrand (South Africa) laid the founda-
tions already in 1951.

ues { f (x1), . . . , f (xN)} are jointly Gaussian distributed. A GP is fully
defined by a mean function m(·) and a kernel k(·, ·), and we write
f ∼ GP(m, k) [O’Hagan, 1978, Rasmussen and Williams, 2006]. An
example of a kernel is the RBF kernel given by

k(xi, xj) = σ2
f exp

(
− 1

2l2 ∥xi − xj∥2
)

, (72)

where the kernel hyper-parameters are the signal variance σ2
f and

the length-scale l. Throughout this chapter, we assume a zero prior
mean function m(·) ≡ 0. Assume N noisy function observations
yn = f (xn) + ε at input locations xn, where ε ∼ N

(
0, σ2

ε

)
. In-

stead of simply returning an approximate function value f (x∗) at
a query point x∗, a GP returns a posterior predictive distribution
p(f (x∗)|X, y) = N

(
f (x∗)

∣∣µ(x∗), σ2(x∗)
)
, where

µ(x∗) = k(x∗, X)(K + σ2
ε I)−1y (73)

σ2(x∗) = k(x∗, x∗)− k(x∗, X)(K + σ2
ε I)−1k(X, x∗). (74)

Here we define X := [x1, . . . , xN], y = [y1, . . . , yN]
⊤ as the training

data and K as the kernel matrix with Kij = k(xi, xj), i, j = 1, . . . , N.

B Change of variables

Integration by substitution (change of variables) plays an important
role in modern machine learning methods, such as normalizing flows
[Rezende and Mohamed, 2015] and Neural ODEs [E, 2017, Chen et al.,
2018]. In the following, we will shed some light on the change-of-
variables trick, and how it can be used in machine learning.

φ
X Z

φ−1

Figure 13: An invertible mapping ϕ
transforms random variables X ∈ X
into random variables Z ∈ Z .

Consider two random variables X ∈ X and Z ∈ Z and an invert-
ible function ϕ : X → Z , so that Z = ϕ(X) (and X = ϕ−1(Z)). For
given pX , we are interested in finding pZ. The key idea behind this
change of variables is to transform x into z via ϕ while keeping track
of the change in distribution.

The key idea is to transform a random variable X into a random
variable Z using an invertible transformation ϕ, while keeping track
of the change in distribution. Then, the distribution pX induces a
distribution pZ via ϕ, while pZ induces a distribution pX via ϕ−1.
This is also illustrated in Figure 13.

By the definition of probability density functions, it holds that∫
X

pX(x)dx = 1 =
∫
Z

pZ(z)dz (75)

with pX ≥ 0 and pZ ≥ 0.
By transforming x into z via ϕ, the determinant of the Jacobian

(derivative) dϕ/dx corresponds to the scaling factor by which vol-
umes change from dx to dz [Deisenroth et al., 2020]; see Figure 14 for

modern integration techniques in machine learning 26

dx

p(x)

dz

p(z)

ϕ

Figure 14: The determinant
|det(dz/dx)| of the Jacobian tells
us how much the domain dx is
stretched to dz.

an illustration. The probability contained in a differential area must
be preserved, i.e.,

prob(z ∈ dz ⊂ Z) = |pZ(z)dz| = |pX(x)dx| = prob(x ∈ dx ⊂ X).
(76)

0 dx
x

0.0

0.1

0.2

0.3

0.4

p X
(x

)

0 dx
x

0

dz

(x
)=

z

0.5 1.0 1.5 2.0
pZ(z)

0

dz

z

Figure 15: The change-of-variables trick
preserves the area under the curve
when pX is transformed into pZ via an
invertible function ϕ.

Figure 15 illustrates this property. From (76) it follows that

|dz| = |dx|
∣∣∣∣ dz
dx

∣∣∣∣ = |dx|
∣∣∣∣dϕ(x)

dx

∣∣∣∣ (77)

|dx| = |dz|
∣∣∣∣dx

dz

∣∣∣∣ = |dz|
∣∣∣∣dϕ−1(z)

dz

∣∣∣∣ . (78)

Therefore,

b∫
a

pX(x)dx
(77)
=

b∫
a

pZ(z)
∣∣∣∣ dz
dx

∣∣∣∣ dx (79)

z=ϕ(x)
=

b∫
a

pZ(ϕ(x))
∣∣∣∣dϕ(x)

dx

∣∣∣∣dx =

ϕ(b)∫
ϕ(a)

pZ(z)dz. (80)

Inspecting (80) closely, we performed a change of (integration)
variables according to z = ϕ(x) and obtain a special case of the gen-
eral integration-by-substitution rule

b∫
a

f (ψ(x))ψ′(x)dx =

ψ(b)∫
ψ(a)

f (z)dz (81)

with f = pZ and ψ = ϕ. Similarly, we get

β∫
α

pZ(z)dz
(78)
=

β∫
α

pX(x)
∣∣∣∣dx

dz

∣∣∣∣ dz (82)

x=ϕ−1(z)
=

β∫
α

pX(ϕ
−1(z))

∣∣∣∣dϕ−1(z)
dz

∣∣∣∣dz =

ϕ−1(β)∫
ϕ−1(α)

pX(x)dx.

(83)

Again, this equation can be directly matched with the integration-
by-substitution rule in (81) with ψ = ϕ−1 and f = pX .

From here, we immediately obtain the target distribution

pZ(z) = pX(ϕ
−1(z))

∣∣∣∣dϕ−1(z)
dz

∣∣∣∣ . (84)

For the multivariate case, we get

pZ(z) = pX(ϕ
−1(z))

∣∣∣∣det
(

dϕ−1(z)
dz

)∣∣∣∣ = pX(x)
∣∣∣∣det

(
dϕ

dx

)∣∣∣∣−1
(85)

modern integration techniques in machine learning 27

where we exploited that det(J−1) = det(J)−1 for the inverse Jaco-

bian J−1 = dϕ−1(z)
dz . Note that the Jacobian dϕ−1(z)

dz exists since ϕ is
invertible and ϕ−1 exists. This latter trick allows us to do

a forward computation of the
desired density via ϕ, and it
does not require an explicit in-
verse ϕ−1 to compute the Jaco-
bian determinant.

C Importance sampling

Importance sampling is one way to address the problem of drawing
samples from a distribution p into drawing samples from a proposal
distribution q from which we can easily draw samples.

Ex∼p[f (x)] =
∫

f (x)p(x)dx (86)

=
∫

f (x)p(x)
q(x)
q(x)

dx (87)

=
∫

f (x)
p(x)
q(x)

q(x)dx (88)

= Ex∼q

[
f (x)

p(x)
q(x)

]
(89)

This means, we turned the expectation w.r.t. p into an expectation
w.r.t. q. If we choose q in a way that we can easily sample from it,
we can approximate this last approximation by Monte Carlo:

Ex∼q

[
f (x)

p(x)
q(x)

]
≈ 1

S

S

∑
s=1

f (x(s))
p(x(s))
q(x(s))

(90)

=
1
S

S

∑
s=1

ws f (x(s)), (91)

where the ws are called importance weights. We note that (91) closely
resembles (17), so that we can interpret importance sampling as a
specific instance of numerical integration, where the degree of free-
dom of determining the importance weights ws lies in choosing the
proposal distribution q.

The importance-sampling estimator is unbiased if q > 0, where
p > 0 and if we can evaluate p. If we do not have enough samples,
importance sampling breaks down in the sense that it puts nearly
all weights on a single sample. This degeneracy is a well-studied
problem, e.g., in the particle filtering (sequential Monte Carlo) litera-
ture [Thrun et al., 2005]. Especially in high dimensions, many draws
from the proposal density q are required, so that importance sam-
pling only really works in low/moderate-dimensional problems.

modern integration techniques in machine learning 29

References

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton,
Benjamin Letham, Andrew G. Wilson, and Eytan Bakshy. BoTorch:
A Framework for Efficient Monte-Carlo Bayesian Optimization. In
Advances in Neural Information Processing Systems, 2020.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume 1. Athena Scientific, 3rd edition, 2005.

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and
Marc P. Deisenroth. Matern Gaussian Processes on Riemannian
Manifolds. In Advances in Neural Information Processing Systems,
2020.

Damiano Brigo, Bernard Hanzon, and François Le Gland. Approx-
imate Nonlinear Filtering by Projection on Exponential Manifolds
of Densities. Bernoulli, 5(3):495–534, 1999.

François-Xavier Briol, Chris Oates, Mark Girolami, and Michael A.
Osborne. Frank–Wolfe Bayesian Quadrature: Probabilistic Integra-
tion with Theoretical Guarantees. In Advances in Neural Information
Processing Systems, 2015.

David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates
of Convergence for Sparse Variational Gaussian Process Regres-
sion. In Proceedings of the International Conference on Machine Learn-
ing, 2019.

Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental
Design: A Review. Statistical Science, 10:273–304, 1995.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Du-
venaud. Neural Ordinary Differential Equations. In Advances in
Neural Information Processing Systems, 2018.

Lehel Csató, Manfred Opper, and Ole Winther. TAP Gibbs Free En-
ergy, Belief Propagation and Sparsity. In Advances in Neural Infor-
mation Processing Systems, 2002.

Mark Cutler and Jonathan P. How. Efficient Reinforcement Learning
for Robots using Informative Simulated Priors. In Proceedings of the
International Conference on Robotics and Automation, 2015.

Andreas Damianou and Neil D. Lawrence. Deep Gaussian Processes.
In Proceedings of the International Conference on Artificial Intelligence
and Statistics, 2013.

Marc P. Deisenroth and Shakir Mohamed. Expectation Propagation
in Gaussian Process Dynamical Systems. In Advances in Neural
Information Processing Systems, 2012.

Marc P. Deisenroth and Carl E. Rasmussen. PILCO: A Model-Based
and Data-Efficient Approach to Policy Search. In Proceedings of the
International Conference on Machine Learning, 2011.

modern integration techniques in machine learning 30

Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters. Gaussian Pro-
cess Dynamic Programming. Neurocomputing, 72(7–9):1508–1524,
2009.

Marc P. Deisenroth, Ryan Turner, Marco Huber, Uwe D. Hanebeck,
and Carl E. Rasmussen. Robust Filtering and Smoothing with
Gaussian Processes. IEEE Transactions on Automatic Control, 57(7):
1865–1871, 2012.

Marc P. Deisenroth, Dieter Fox, and Carl E. Rasmussen. Gaus-
sian Processes for Data-Efficient Learning in Robotics and Control.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):
408–423, 2015.

Marc P. Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathemat-
ics for Machine Learning. Cambridge University Press, 2020. URL
https://mml-book.com.

Persi Diaconis. Bayesian Numerical Analysis. Statistical Decision The-
ory and Related Topics IV, 1:163–175, 1988.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear
Independent Components Estimation. arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Es-
timation Using Real NVP. In Proceedings of the International Confer-
ence on Learning Representation, 2017.

Arnaud Doucet, Simon J. Godsill, and Christophe Andrieu. On Se-
quential Monte Carlo Sampling Methods for Bayesian Filtering.
Statistics and Computing, 10:197–208, 2000.

Weinan E. A Proposal on Machine Learning via Dynamical Systems.
Communications in Mathematics and Statistics, 5(1):1–11, 3 2017.

Stefanos Eleftheriadis, Thomas F. W. Nicholson, Marc P. Deisen-
roth, and James Hensman. Identification of Gaussian Process State
Space Models. In Advances in Neural Information Processing Systems,
2017.

Mevlana C. Gemici, Danilo J. Rezende, and Shakir Mohamed. Nor-
malizing Flows on Riemannian Manifolds. arXiv:1611.02304, 2016.

Alan Genz. Numerical Computation of Rectangular Bivariate and
Trivariate Normal and t Probabilities. Statistics and Computing, 14:
251–260, 2004.

Soumya Ghosh, Francesco M. Delle Fave, and Jonathan Yedidia. As-
sumed Density Filtering Methods for Learning Bayesian Neural
Networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2016.

Agathe Girard, Carl E. Rasmussen, Joaquin Quiñonero Candela, and
Roderick Murray-Smith. Gaussian Process Priors with Uncertain
Inputs—Application to Multiple-Step Ahead Time Series Forecast-
ing. In Advances in Neural Information Processing Systems, 2003.

https://mml-book.com

modern integration techniques in machine learning 31

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Prod-
ucts. Academic Press, 7th edition, 2007.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard
Schölkopf, and Alexander Smola. A Kernel Two-Sample Test. Jour-
nal of Machine Learning Research, 13(25):723–773, 2012.

Philipp Hennig, Michael A. Osborne, and Mark Girolami. Proba-
bilistic numerics and uncertainty in computations. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
471:20150142, 2015.

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic
Backpropagation for Scalable Learning of Bayesian Neural Net-
works. In Proceedings of the International Conference Machine Learn-
ing, 2015.

Simon J. Julier and Jeffrey K. Uhlmann. A New Extension of the
Kalman Filter to Nonlinear Systems. In Proceedings of AeroSense:
Symposium on Aerospace/Defense Sensing, Simulation and Controls,
1997.

Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and
Nonlinear Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

Simon J. Julier, Jeffrey K. Uhlmann, and Hugh F. Durrant-Whyte.
A New Method for the Nonlinear Transformation of Means and
Covariances in Filters and Estimators. In Proceedings of the American
Control Conference, 1995.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow
with Invertible 1×1 Convolutions. In Advances in Neural Informa-
tion Processing Systems, 2018.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational
Bayes. In Proceedings of the International Conference on Learning Rep-
resentations, 2014.

Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya
Sutskever, and Max Welling. Improved Variational Inference with
Inverse Autoregressive Flow. In Advances in Neural Information Pro-
cessing Systems, 2016.

Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian Filtering
using Gaussian Process Prediction and Observation Models. Au-
tonomous Robots, 27(1):75–90, 2009.

Danie G. Krige. A Statistical Approach to Some Mine Valuations and
Allied Problems at the Witwatersrand. Master’s thesis, University
of the Witwatersrand, 1951.

Aleksandr S. Kronrod. Nodes and Weights of Quadrature Formulas:
Sixteen-place Tables. Consultants Bureau, 1965.

modern integration techniques in machine learning 32

Dennis V. Lindley. The use of prior probability distributions in sta-
tistical inference and decisions. In Proceedings of the Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 1: Contribu-
tions to the Theory of Statistics, 1961.

Dennis V. Lindley and Adrian F. M. Smith. Bayes Estimates for
the Linear Model. Journal of the Royal Statistical Society: Series B
(Methodological), 34(1):1–18, 1972.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swer-
sky. Graph Normalizing Flows. In Advances in Neural Information
Processing Systems, 2019.

Emile Mathieu and Maximilian Nickel. Riemannian Continuous
Normalizing Flows. In Advances in Neural Information Processing
Systems, 2020.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson,
Keisuke. Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin
Ghahramani, and James Hensman. GPflow: A Gaussian Process
Library using TensorFlow. Journal of Machine Learning Research, 18

(40):1–6, 2017.

Thomas P. Minka. A Family of Algorithms for Approximate Bayesian
Inference. PhD thesis, Massachusetts Institute of Technology, 2001.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy
Mnih. Monte Carlo Gradient Estimation in Machine Learning.
Journal of Machine Learning Research, 21:1–62, 2020.

Iain Murray. Monte Carlo Inference Methods. NeurIPS Tutorial, 2015.

R. F. Ohab and A. R. Stubberud. A Technique for Estimating the State
of a Nonlinear System. IEEE Transactions on Automatic Control, 10:
150–155, 1965.

Anthony O’Hagan. Curve Fitting and Optimal Design for Prediction.
Journal of the Royal Statistical Society, Series B, 40(1):1–42, 1978.

Anthony O’Hagan. Bayes-Hermite Quadrature. Journal of Statistical
Planning and Inference, 29:245–260, 1991.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol
Vinyals, Koray Kavukcuoglu, George Driessche, Edward Lock-
hart, Luis Cobo, Florian Stimberg, Norman Casagrande, Dominik
Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal Kalchbren-
ner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov,
and Demis Hassabis. Parallel WaveNet: Fast High-Fidelity Speech
Synthesis. In Proceedings of the International Conference on Machine
Learning, 2018.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked
Autoregressive Flow for Density Estimation. In Advances in Neural
Information Processing Systems, 2017.

modern integration techniques in machine learning 33

George Papamakarios, Eric Nalisnick, Danilo J. Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. Normalizing Flows for
Probabilistic Modeling and Inference. arXiv:1912.02762, 2019.

Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl E.
Rasmussen. Propagation of Uncertainty in Bayesian Kernel
Models—Application to Multiple-Step Ahead Forecasting. In IEEE
International Conference on Acoustics, Speech and Signal Processing,
2003.

Ali Rahimi and Ben Recht. Random features for large scale ker-
nel machines. In Advances in Neural Information Processing Systems,
2008.

Carl E. Rasmussen and Zoubin Ghahramani. Bayesian Monte Carlo.
In Advances in Neural Information Processing Systems, 2003.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

Danilo J. Rezende and Shakir Mohamed. Variational Inference with
Normalizing Flows. In Proceedings of the International Conference on
Machine Learning, 2015.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
Backpropagation and Variational Inference in Deep Latent Gaus-
sian Models. In Proceedings of the International Conference on Machine
Learning, 2014.

Danilo J. Rezende, George Papamakarios, Sébastien Racanière,
Michael S. Albergo, Gurtej Kanwar, Phiala E. Shanahan, and Kyle
Cranmer. Normalizing Flows on Tori and Spheres. In Proceedings
of the International Conference on Machine Learning, 2020.

Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate
Bayesian Inference for Latent Gaussian Models by Using Inte-
grated Nested Laplace Approximations. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 71(2):319–392, 2009.

Hugh Salimbeni and Marc P. Deisenroth. Doubly Stochastic Varia-
tional Inference for Deep Gaussian Processes. In Advances in Neural
Information Processing Systems, 2017.

Hugh Salimbeni, Vincent Dutordoir, James Hensman, and Marc P.
Deisenroth. Deep Gaussian Processes with Importance-Weighted
Variational Inference. In Proceedings of the International Conference
on Machine Learning, 2019.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Prob-
abilistic Programming in Python using PyMC3. PeerJ Computer Sci-
ence, 2:e55, 2016.

Gerald L. Smith, Stanley F. Schmidt, and Leonard A. McGee. Ap-
plication of Statistical Filter Theory to the Optimal Estimation of

modern integration techniques in machine learning 34

Position and Velocity on Board a Circumlunar Vehicle. Technical
report, NASA, 1962.

Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis.
Texts in Applied Mathematics. Springer-Verlag, 3rd edition, 2002.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. The MIT Press, 2005.

Lilian Weng. Flow-based Deep Generative Models. lilianweng.

github.io/lil-log, 2018. URL http://lilianweng.github.

io/lil-log/2018/10/13/flow-based-deep-generative-models.

html.

James T. Wilson. Decision-Making with Gaussian Processes: Sampling
Strategies and Monte Carlo Methods. PhD thesis, Imperial College
London, 2023.

James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter
Mostowsky, and Marc P. Deisenroth. Efficiently Sampling Func-
tions from Gaussian Process Posteriors. In Proceedings of the Inter-
national Conference on Machine Learning, 2020a.

James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter
Mostowsky, and Marc P. Deisenroth. Pathwise Conditioning of
Gaussian Processes. Journal of Machine Learning Research, 22:1–4,
2020b.

lilianweng.github.io/lil-log
lilianweng.github.io/lil-log
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
http://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

	1 Motivation
	2 Numerical integration (quadrature)
	3 Monte Carlo integration
	4 Normalizing flows
	5 Inference in time series models
	A Gaussian processes
	B Change of variables
	C Importance sampling

